您当前所在位置:首页科技论文弧微分论文(弧微分在高数哪一章)

弧微分论文(弧微分在高数哪一章)

发布时间:2023-06-12 08:25:09编辑:小编归类:科技论文

1. 弧微分在高数哪一章

考研大纲每年都会有新的文本颁布,但是每年与前年的变化不大,尤其是数学,考研同学可参考前年考纲,新考纲在每年的9月份左右会在中国研究生招生信息网发布,新考纲也会有各个考研机构老师进行解读,可自行去研招网下载、研究,下面附2019年数二考纲:

2019年数学二考试大纲

考试科目:高等数学、线性代数

考试形式和试卷结构

一、试卷满分及考试时间

试卷满分为150分,考试时间为180分钟.

二、答题方式

答题方式为闭卷、笔试.

三、试卷内容结构

高等数学  约78%

线性代数  约22%

四、试卷题型结构

单项选择题 8小题,每小题4分,共32分

填空题 6小题,每小题4分,共24分

解答题(包括证明题) 9小题,共94分

高等数学

一、函数、极限、连续

考试内容

函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:

函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质

考试要求

1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.

2.了解函数的有界性、单调性、周期性和奇偶性.

3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.

4.掌握基本初等函数的性质及其图形,了解初等函数的概念.

5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.

6.掌握极限的性质及四则运算法则.

7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.

8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.

9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.

10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.

二、一元函数微分学

考试内容

导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 弧微分 曲率的概念 曲率圆与曲率半径

考试要求

1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.

2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.

3.了解高阶导数的概念,会求简单函数的高阶导数.

4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.

5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.

6.掌握用洛必达法则求未定式极限的方法.

7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数的最大值和最小值的求法及其应用.

8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.

9.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.

三、一元函数积分学

考试内容

原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 反常(广义)积分 定积分的应用

考试要求

1.理解原函数的概念,理解不定积分和定积分的概念.

2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.

3.会求有理函数、三角函数有理式和简单无理函数的积分.

4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.

5.了解反常积分的概念,会计算反常积分.

6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数平均值.

四、多元函数微积分学

考试内容

多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数的偏导数和全微分 多元复合函数、隐函数的求导法 二阶偏导数 多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算

考试要求

1.了解多元函数的概念,了解二元函数的几何意义.

2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.

3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.

4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.

5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).

五、常微分方程

考试内容

常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 微分方程的简单应用

考试要求

1.了解微分方程及其阶、解、通解、初始条件和特解等概念.

2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.

3.会用降阶法解下列形式的微分方程: 和 .

4.理解二阶线性微分方程解的性质及解的结构定理.

5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.

6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.

7.会用微分方程解决一些简单的应用问题.

线性代数

一、行列式

考试内容

行列式的概念和基本性质 行列式按行(列)展开定理

考试要求

1.了解行列式的概念,掌握行列式的性质.

2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.

二、矩阵

考试内容

矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价 分块矩阵及其运算 

考试要求

1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质.

2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.

3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.

4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.

5.了解分块矩阵及其运算. 

三、向量

考试内容

向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量的内积 线性无关向量组的的正交规范化方法 

考试要求

1.理解维向量、向量的线性组合与线性表示的概念.

2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.

3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.

4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系.

5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.

四、线性方程组

考试内容

线性方程组的克拉默(Cramer)法则 齐次线性方程组有非零解的充分必要条件 非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 非齐次线性方程组的通解

考试要求

1.会用克拉默法则.

2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.

3.理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组的基础解系和通解的求法.

4.理解非齐次线性方程组的解的结构及通解的概念.

5.会用初等行变换求解线性方程组.

五、矩阵的特征值和特征向量

考试内容

矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及其相似对角矩阵

考试要求

1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.

2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.

3.理解实对称矩阵的特征值和特征向量的性质.

六、二次型

考试内容

二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性

考试要求

1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.

2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.

3.理解正定二次型、正定矩阵的概念,并掌握其判别法.

2. 弧微分讲解

弧微分数数三考。

弧微分是用一条线段的长度来近似代表一段弧的长度。设函数f(x)在区间(a,b)内具有连续导数,在曲线Y=f(x)上取定点Mo(xo,f(xo))作为计算曲线弧长的基点,M(x,y)是曲线上任意一点。 规定:(1)自变量x增大的方向为曲线的正向;(2)当弧段MoM的方向与曲线正向一致时,M0M的弧长S>0;相反时,S<0。

3. 弧微分例题及解析

是描述了单位质点在沿着曲线方向移动时,受到的场力的做功。即在场力的作用下,单位质点在沿着曲线方向移动的过程中,所受到的力在路径上的积分。这个积分值可以表示为力场在曲线上的切向分量与弧微分的乘积的积分。它的正负号决定了场力对于运动质点做正功还是负功。例如,当该积分为正时,表示场力对于运动质点做正功,能够增加质点的动能;当该积分为负时,表示场力对于运动质点做负功,能够减少质点的动能。在物理学中,第一类曲线积分被广泛应用于描述电场、磁场、重力场中质点的运动。

4. 弧微分ds

ds表示弧微分 (ds)^2=(dx)^2+(dy)^2 ds dx dy 构成微分三角形,ds是斜边。 用弧的增量去乘一个函数的物理意义:这个函数代表线密度函数,所以ds 的积分表示曲线形构件的质量,在数学上这个积分叫做:对弧长的曲线积分。

5. 弧微分例题

关于这个问题,极坐标的弧微分公式可以通过极坐标系中两点之间的弧长公式和直角坐标系中两点之间的距离公式相结合推导得出。

首先,我们知道在极坐标系中,一条弧对应的弧长可以表示为:

$$

ds=r\,d\theta

$$

其中,$r$ 是极径,$\theta$ 是极角,$ds$ 是弧长微元。

然后,我们可以将极坐标系中两点之间的距离公式转换为弧长公式,得到:

$$

d=\sqrt{(r_2\cos\theta_2-r_1\cos\theta_1)^2+(r_2\sin\theta_2-r_1\sin\theta_1)^2}

=\sqrt{r_1^2+r_2^2-2r_1r_2\cos(\theta_2-\theta_1)}

$$

其中,$r_1$ 和 $\theta_1$ 是第一个点的极径和极角,$r_2$ 和 $\theta_2$ 是第二个点的极径和极角,$d$ 是两点之间的距离。

接下来,我们对 $d$ 进行微分,得到:

$$

\begin{aligned}

dd &=\frac{d}{d\theta_2}(r_1^2+r_2^2-2r_1r_2\cos(\theta_2-\theta_1))\,d\theta_2 \\

&=(2r_2-2r_1\cos(\theta_2-\theta_1))\,d\theta_2 \\

&=2r\sin\phi\,d\theta

\end{aligned}

$$

其中,$\phi$ 是两点之间的极角差,即 $\phi=\theta_2-\theta_1$,$r$ 是两点之间的距离,即 $r=\sqrt{r_1^2+r_2^2-2r_1r_2\cos\phi}$。

将 $dd=2r\sin\phi\,d\theta$ 代入 $ds=r\,d\theta$ 中,即可得到极坐标的弧微分公式:

$$

ds=\frac{r}{\sqrt{r^2-2r_1r_2\cos\phi}}\,dd

$$

其中,$r_1$ 和 $r_2$ 分别为两点的极径。

6. 弧微分的基本公式

弧微分是用一条线段的长度来近似代表一段弧的长度。设函数f(x)在区间(a,b)内具有连续导数,在曲线Y=f(x)上取定点Mo(xo,f(xo))作为计算曲线弧长的基点,M(x,y)是曲线上任意一点。 规定:

(1)自变量x增大的方向为曲线的正向;(2)当弧段MoM的方向与曲线正向一致时,M0M的弧长S>0;相反时,S<0。

7. 弧微分怎么理解

物化ds等于变量的增量。

因为曲线积分的物理意义代表曲线的质量。曲线的质量公式就是曲线的长度乘以它的单位长度的密度。不过这对于质量分布均匀的曲线适用,而实际情况中我们遇到的曲线大多是不均匀的,这就遇到问题了。

引例

先看一个例子:设有一曲线形构件占xOy面上的一段曲线 ,设构件的密度分布函数为ρ(x,y),设ρ(x,y)定义在L上且在L上连续,求构件的质量。对于密度均匀的物件可以直接用ρV求得质量;对于密度不均匀的物件,就需要用到曲线积分,dm=ρ(x,y)ds;所以m=∫ρ(x,y)ds;L是积分路径,∫ρ(x,y)ds就叫做对弧长的曲线积分。

8. 弧微分的题目

弧微分公式是ds=√[1+(y')²]dx。弧微分是用一条线段的长度来近似代表一段弧的长度。弧微分是设函数f(x)在区间(a,b)内具有连续导数,在曲线Y=f(x)上取定点Mo(xo,f(xo))作为计算曲线弧长的基点。

弧微分公式规定:自变量x增大的方向为曲线的正向,当弧段MoM的方向与曲线正向一致时,M0M的弧长S>0;当弧段MoM的方向与曲线相反时,S<0。弧微分的ds,近似等于弧s的增量Δs,它要比dy长,dy是它在y轴的投影。它表示的是弧的长度的变化率。

9. 弧微分求的是什么

推导弧长公式需要用到微积分中的一些知识,请注意掌握以下内容:

- 弧微分

- 微积分中的极限

- 一元函数的导数等。

下面是弧长公式的简单推导:

假设有一条曲线,其函数表示为 $y=f(x)$ 且 $\alpha\leq x\leq\beta$,要求其弧长为 $L$。为了得出一个近似值,我们可以将该曲线分为许多小段,并将每个小段视为线段,这样总长为每个线段长度之和。即:

$$L\approx\sum_{n=1}^{N}\sqrt{(\Delta x_n)^2+(\Delta y_n)^2}=\sum_{n=1}^{N}\sqrt{1+\left(\frac{\Delta y_n}{\Delta x_n}\right)^2}\Delta x_n$$

其中,$\Delta x_n$ 表示 $x$ 轴上第 $n$ 个小段的长度,对应的 $\Delta y_n$ 表示该小段上对应的 $y$ 轴长度。$N$ 表示可将曲线上的所有点用相同长度的线段连接成的总数。

为得到精确解,需要将每个分段的长度缩小到无穷小的程度,并求和,即:

$$L=\lim_{N\rightarrow\infty}\sum_{n=1}^{N}\sqrt{1+\left(\frac{\Delta y_n}{\Delta x_n}\right)^2}\,\Delta x_n=\int_{\alpha}^{\beta}\sqrt{1+\left(\frac{dy}{dx}\right)^2}\,dx$$

这便是弧长公式的基本推导,其中 $\frac{dy}{dx}$ 代表曲线的斜率,它对应于微积分中的导数。根据定义,若某函数 $y=f(x)$ 在一点 $x_0$ 可导,则 $y=f(x)$ 在该点的切线斜率即为该点的导数 $\frac{dy}{dx}|_{x=x_0}$,也就是该曲线在该点的斜率。

10. 高数弧微分公式

dy/dx +P(x)y=Q(x) 这就是一阶线性微分方程 必须是这个形式的方程 才能这样套公式

际蓝论文网版权声明:以上内容作者已申请原创保护,未经允许不得转载,侵权必究!授权事宜、对本内容有异议或投诉,敬请联系网站管理员,我们将尽快回复您,谢谢合作!

演技的论文(演技的重要性作文) 挑战杯创业大赛答辩一般会问有什么问题?